AN OLIVINE-MELT THERMOMETER BASED ON $D_{NI}\textsc{,}$ WITH NO DEPENDENCE ON H_2O IN THE MELT: NEW EXPERIMENTAL EVIDENCE

X., Pu¹, G., Moore, J¹., Touran^{1,2}, J., Gagnon³, R., Lange¹.

¹Department of Earth and Environment Sciences, University of Michigan, Ann Arbor

²University of California, Davis, CA, 95616, USA

³University of Windsor, Windsor, ON, N9B 3P4, Canada

A new olivine-melt thermometer introduced in [1], which is based on the partitioning of Ni ($D_{Ni}^{\text{ol/liq}}$) at crustal conditions (<1 GPa), was hypothesized to have a negligible dependence on dissolved H2O content in the melt. This partitioning behavior is in marked contrast to thermometers based on $D_{Mg}^{\text{ol/liq}}$. In this study, new olivine-melt equilibrium experiments were conducted on a basaltic glass (9.6 wt% MgO; 352 ppm Ni) under hydrous conditions at 0.5GPa and anhydrous conditions at 1 bar and 0.5 GPa to compare the effect of dissolved H_2O in the melt on $D_{Mg}^{\text{ol/liq}}$ and $D_{Ni}^{\text{ol/liq}}$. The Ni-thermometer in [1], calibrated on 123 1-bar olivine-melt experiments in the literature, recovers the experimental temperatures for all experimental runs (including hydrous runs where the melts contained at least 4.4 wt% H_2O) within an average of 14 degrees, less than the 1-sigma error of the Ni-thermometer ($\pm 29^{\circ}C$). In contrast, the Mg-thermometer recovers the anhydrous experimental temperatures within error ($\pm 26^{\circ}C$), but overestimates the experimental temperatures under hydrous conditions by +88 to +141 degrees. This result underscores that $D_{Ni}^{\text{ol/liq}}$ has a negligible dependence on dissolved water content in the melt (up to at least 4.4 wt% H_2O), as opposed to $D_{Mg}^{\text{ol/liq}}$ which displays a strong dependence. It is proposed that the olivine-melt thermometer based on $D_{Ni}^{\text{ol/liq}}$ can be applied to hydrous arc basalts at depths < 1 GPa without corrections for dissolved water in the melt or pressure.

[1] Pu et al. (2017) Am. Min. 102, 750-765.